MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2014	0620	33	
1	(a)	carbo	n dioxide (1)		[1]	
	(b)	prope	ne (1)		[1]	
	(c)	krypto	n (1)		[1]	
	(d)	nitrog	en (1)		[1]	
	(e)	fluorin	ie (1)		[1]	
	(f)	sulfur	dioxide (1)		[1]	
	(g)	hydro	gen (1)		[1]	
					[Total: 7]	
2	(a)	any th particl move collide more guida	aree from: es have more energy (1) faster (1) e more frequently (1) particles have energy greater than E _a nce: more colliding molecules have enough energy to	react is worth (2)	[3]	
	(b)	particl no boi molec OR	es move in all directions/randomly <u>in both</u> liquids and nds/very weak forces between particles in gases (1) ules can move apart/separate (to fill entire volume) (1	gases (1))		
		bonds molec	/forces/IMF between particles in liquids (1) ules cannot move apart/separate (so fixed volume in	liquids) (1)	[3]	
					[Total: 6]	
3	(a)	(i) e	nzymes (1)		[1]	
		(ii) re m fe O el sl	educes growth of microbes/rate of reproduction of nicrobes are dormant (1) ewer (enzymes) to decay food (1) R nzymes less efficient at lower temperatures (1) ower reaction rate (1)	f microbes is lo	wer/ [2]	
	(b)) correct linkage (1) rest of molecule correct and continuation shown (1) (other product is) water (1)				

	Pa	ige 3		Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	33
	(c)	(c) any three from: photosynthesis (1) light/photochemical (1) chlorophyll/chloroplasts (1) carbon dioxide and water needed (1) (glucose and) oxygen (1)				[3] [Total: 9]
4	(a)	(i)	heat fract liquio	limestone/calcium carbonate (1) ional distillation (1) d air (1)		[3]
		(ii)	any carb	two of the oxides, C, S, P and Si, mentioned (1) on dioxide and sulfur dioxide escape/are gases (1)		
			phos phos	sphorus oxide or silicon(IV) oxide react with calcium sphorus oxide or silicon(IV) oxide are acidic and cal	n oxide/ lcium oxide is bas	sic (1)
			to fo	rm a slag or calcium silicate or calcium phosphate	(1)	
			mus	t have correct equation for one of the above reactio	ns (1)	[5]
	(b)	(i)	lattic mob	e/rows/regular arrangement of cations/positive ion ile/free/delocalised/sea of electrons (1)	ns/Fe ²⁺ (1)	[2]
		(ii)	the r witho	rows of ions/ions can move past each other (1) out the metal breaking/bonds are not directional/no	ot rigid (1)	[2]
		(iii)	carb prev	on particles/atoms different size (1) ents movement of rows, etc. (1)		[2]
						[Total: 14]
5	 (a) faster reaction rate (1) higher collision rate (1) greater yield or favour RHS (1) pressure favours products because it has lower volume/fewer product molecules (² 					s (1) [4]
	(b)	 b) higher temperature favour endothermic reaction (1) this is the back reaction/left hand side/reactants (1) 				
	reduce y		исе у	yield (1)		
	(c)	(i)	grea	ter surface area (1)		[1]
		(ii)	incre can and	ease reaction rate (1) use a lower temperature to have an economic rate not decrease yield (by increasing temperature).	(1)	[2]

P	Page 4		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2014	0620	33
(d) low onl OF add onl OF inc onl	ver the y amr t d wate y amr t rease y amr	e temperature (1) monia will liquefy (1) er (1) monia will dissolve (1) pressure (1) monia will liquefy (1)		[2]
(e)) sec thii fou all two	cond I rd line Irth lin three D corre	ine $+3 \times 155 = +465$ $-3 \times 280 = (-)840$ ine $-3 \times 565 = (-)1695$ correct (2) ect (1)		
	11 84 bot exc	70 + 4 0 + 16 th nun othern	465 = 1635 695 = 2535 nerically correct (1) nic reaction with some reasoning (1)		[4] [Total: 16]
		•			
6 (a)) (i)	C ar	nd H <u>only</u> (1)		[1]
	(ii)	only	single bonds (1)		[1]
(b)) (i)	C _n H	_{2n+2} (1)		[1]
	(ii)	C ₁₄ ⊦ (14⇒	H ₃₀ (1) × 12) + 30 = 198 (g) (1)		[2]
(c)) (i)	C₀H	$_{20}$ + 14 O ₂ \rightarrow 9CO ₂ + 10H ₂ O (2)		[2]
	(ii)	Volu C _x H 20 1 C₅H	ime ratio $y(g) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$ $160 \qquad 100 \qquad all i$ $8 \qquad 5 \qquad mo$ $12 + 8O_2 \rightarrow 5CO_2 + 6H_2O$	in cm³ le ratio	
		for e	equation as above (2)		[3]
(d)) (i)	alka alke hydr	nes in petrol/fuel/solvent (1) nes to make alcohols/plastics/polymers/solvent ogen to make ammonia/fuel/fuel cells, etc. (1)	ts (1)	[3]
	(ii)	a co C₁₀⊦	rrect equation for example: $H_{22} \rightarrow C_8 H_{16} + C_2 H_4 + H_2$ (1)		[1]

	Page 5			Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2014	0620	33	
	(e)	(i)	light	or lead tetraethyl/catalyst/high temperature (1)		[1]	
		(ii)	CH ₃ -	-CHCI–CH ₃ (1)		[1]	
						[Total: 16]	
7	(a)	bau	xite (1)		[1]	
	(b)	(b) electrolyte alumina/aluminium oxide dissolved in molten cryolite (1) use cryolite to reduce mp/comparable idea/temperature of electrolyte 900 $1000^{\circ}C(1)$ electrodes carbon (1) aluminium formed at cathode/ $Al^{3^{+}} + 3e \rightarrow Al(1)$ oxygen formed at anode/ $2O^{2^{-}} \rightarrow O_2 + 4e(1)$ anode burns/reacts to carbon dioxide/ $C + O_2 \rightarrow CO_2(1)$					
	(c)	(i)	food	containers/window frames/cooking foil/cars/bikes	s/drink cans (1)	[1]	
		(ii)	40H	$^{-} \rightarrow O_2 + 2H_2O + 4e (2)$		[2]	
			4A <i>l</i> -	+ $3O_2 \rightarrow 2Al_2O_3$ (2)		[2]	
						[Total: 12]	